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ABSTRACT 

The Helmholtz theorem is rederived with rigorous vector analysis. The theorem is 
valid everywhere within any arbitrary mathematical boundary. Applications of the 
theorem to hydrodynamics are discussed. 
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INTRODUCTION 

One of the theorems of Helmholtz t-lates that a vector field with moderate restrictions 
on continuity can be expressed as the sum of the gradient of a scalar potential and 
the curl of a vector potential. This theorem has been known for a long time, and is 
derived in texts1-3 on vector analysis. An elegant proof was prepared as part of a 
course which was taught in 1958 at the Naval Proving Ground. Publication of the proof 
at this time is justified by the impending application of the Helmholtz theorem to the 
computation of flow around a ship. 

The existence of the scalar and vector potentials is proven by the derivation of 
formulae which express the potentials. Only vector identities are used in the derivation. 
The theorem is valid within any closed mathematical boundary. 

The algebra and the calculus of scalars, vectors, and tensors are the subjects of 
many texts Proofs are both geometrical constructions and component manipulations. 
The most relevant theorems which are background for the derivation are presented 
herewith. Formulations are stated in Gibbs notation. Symbolic expressions are invariant 
with respect to the choice of coordinate system. 

RIEMANN INTEGRATION 

Let a number of variables vary over a range of integration. Let the range be divided 
into elements such that the increment of each variable in any element is less than e. 
An analytic function of the variables can be approximated within each element by a 
Taylor series expansion. The true integral of the function within each element differs 
from the trapezoidal integral by infinitesimals of higher order than c. The true integral 
reduces to the trapezoidal integral in the limit as c goes to zero. The structure of 
each element is immaterial as long as the elements fill the range of integration. This 
is known as Riemann integration4. 

VECTORS 

A vector is a quantity with magnitude and direction. The magnitude and the direction 
are invariants of space. 

The scalar product of two vectors a and b is given by the equation 

ab = |a|Ib|cose (1) 

where |a| and |b| are the magnitudes of the vectors and 6 is the angle between them. 
The vector product of two vectors a and b is given by the equation 

axb = n |a||b|sin0 (2) 

where n is a unit vector normal to the plane of a and b, |a| and |b| are the magnitudes 
of the vectors, and 6 is the angle between them. The direction of n is such that the 
direction of b is obtained from the direction of a by a right-handed rotation about 
the vector n. 

The scalar-vector product of three vectors is given by the equation 

abxc = (an) |b||c|sinfl (3) 

where n is a unit vector normal to the plane of b and c. while 0 is the angle between 
b and c. The scalar product an is the separation of two parallelograms of area bxc. 
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Thus the scalar-vector product a-bxc is the volume of a parallelepiped with edges a, b, c. 
The triple vector product of three vectors is given by the equation 

ax(bxc) = (axn) ib|lcisin0 (4) 

where n is a unit vector normal to the plane of b and c, while 0 is the angle between 
b and c. The vector product a^n has a magnitude equal to the projection of a on the 
plane of b and c, while it has a direction perpendicular to the projection of a on the 
plane of b and c. Planes which contain the tip of a and are perpendicular to b and c 
intersect b and c at the projections of a on the directions of b and c. Lines which 
contain the origin of a and are parallel to the planes complete a parallelogram whose 
sides are the components of a in directions perpendicular to b and c. After rotation 
through a right angle the components of a become the components of a>n in directions 
parallel to b and c. The triple vector product is given by the equation 

ax(bxc) = bac - cab (5) 

which resolves the triple vector product into components in the plane of b and c. 
A tensor is an operator which converts one set of vectors into another set in 

accordance with a linear transformation. The tensor has a matrix whose elements are 
the coefficients in the linear transformation. Typical tensors are rotations and 
deformations. 

The tensor product of three vectors is given by the equation 

abc = (c b) a (6) 

where c is transformed into a vector in the direction of a by a special tensor with a 
matrix whose elements are the products of the components of a and b. Any letter 
could be used to represent the tensor, but the dyadic notation ab is more useful. 

Let i, j, k be orthogonal unit vectors in the directions of increasing coordinates 
x, y, z in a right-handed Cartesian coordinate system. Then the vectors have the 
properties 

ii = jj = kk= 1 ij = jk = ki = 0 (7) 

ixi = jxj = kxk = 0 ixj = k   jxk = i   kxi = j (8) 

Any vector can be resolved into components along the unit vectors. 
All nine pairs of vectors among i, j, k form a fundamental set of unit dyadics. Any 

tensor can be resolved into components along the unit dyadics. The identity tensor I 
is defined by the equation 

I = ii + jj + kk (9) 

The identity tensor transforms every vector into itself. 

GRADIENTS 

The gradient is an operator which gives the differential change of a function for a 
differential displacement in space. The gradient of a function A is expressed by the 
equation 

„.   .aA   .aA   . aA ,,n, 
VA = i—+ j—+ k— (10) 

dx    Jdy       dz 

where the function A may be a scalar, vector, or tensor. 
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The divergence of a function A is expressed by the equation 

„,   . aA   . aA   , aA .,,. VA=,^+J^ + kä; (11) 

where the function A may be a vector or tensor. 
The curl of a function A is expressed by the equation 

„ k   . ÖA   . aA   ,   aA .,0. 
VxA = ix— + ix— + kx— (12) 

az        ay dz 

where the function A may be a vector or tensor. 
The partial derivatives of a continuous function are independent of the order of 

differentiation. Thus the function A satisfies the identities VxVA = 0 and V-VxA = 0. 
The Laplacian of a function A is expressed by the equation 

'  „.   a2A   a^   a2A V-VA=_ + _ + _ 13) 
aiz    dye    a?8 

where the function A may be a scalar, vector, or tensor. 
Laplace's equation is VVA = 0. An important solution of Laplace's equation is given 

by the equation 

;=  71   ^     i (14) ^     Vi' + y2 + z8 

which may be verified by substitution in the Laplacian. 

GAUSS THEOREM 

Let a volume of space be  enclosed by a boundary surface.  Integration of the 
divergence throughout the volume is expressed by the equation 

j^är^jjjif^äyäz.jjjy^d.dyäz.jjj^dxdyäz       (15) 

where dr is a differential element of volume. Partial integration leads to the equation 

fvAdT= f f[»AI    dydz+ |  fMAI    dzdx + j   | |k-Al    dxdy (16) 

where subscript (1) and superscript (2) indicate the difference between values of an 
integral at the opposite ends of the line of integration. The surface elements 

dydz dzdx dxdy (17) 

can be replaced  in  the  surface  integration  by the  parallelograms which  are  the 
projections of a surface element ds on each coordinate plane. Thus 

JVA^J ds-A (16) 

where dr is the differential volume element and ds is the differential surface element. 
The vector ds is directed outward from the volume of integration. This is known as 
the Gauss theorem. 



STOKES THEOREM 

Let a surface be bounded by a closed circuit. Let u. v be right-handed coordinates 
in the surface. A vector surface element is defined by the equation 

ds = |—x—jdudv (19) 
\ on   dv/ 

where r is the position vector of the element with coordinates u. v. Application of the 
triple vector product transformation leads to the equation 

(?L !!L\v    - ^L ^L (V \\- —— - — — -—(—A\-—I—a] 
\du   dv) du dv dv du     du dv     du\dv    /     dv\du   / 

Then integration is given by the equation 

dsVxA= I    —A      du-       —A      du = i) — A du + (j)-^ A dv (21) 
J J [dv   J(1) J [du   J(1) Jau J dv 

where subscript (1) and superscript (2) indicate the difference between values of an 
integral at opposite ends of the line of integration. Thus 

ds-VxA = (I) dr-A (22) 

where ds is the differential surface element and dr is the differential circuit 
displacement. Circuit integration is right-handed relative to the surface normal. This 
is known as the Stokes theorem. 

HELMHOLTZ THEOREM 

Let a volume be enclosed by a surface and let a point within the volume be enclosed 
by a sphere of radius e. In the space between the two surfaces a vector a satisfies 
the Green's theorem which is expressed by the equation 

fv(V[/a)dT= fv-W/adT+ fvt/VadT= f ds-Vf/a (23) 

Let U be given by the equation 

U=- VVU = 0 (24) 
r 

where r is the distance of the point of integration from the center of the sphere. 
Within the sphere the integral 

Hi). 47r (r=€)(25) 

is the solid angle of the sphere. Therefore the value of a at the center of the sphere 
is given by the equation 

-^Jv(;)v,dT-^/*'(;)• (26) 



Transformations of the integrals are made with the aid of the following identities. 

V.|av(l)| = (Va)v(i) + a.Vv(l) (27) 

V-jla-vf-) j = Va-VJ-j + wf-Va (28) 

Inasmuch as VV(i) is a symmetric tensor, it may be cancelled to give the equation 

I (V-aw(-)dT- fvaV^jdT= fdsavfij- fdsaVf-J (29) 

Transformations of the integrals are made with the aid of the following identities. 

vf - jx(axds) = avf-Vds - ds ^(-ja (30) 

v(i)x(Vxa) = Va.v(i)-v(i).v'a (31) 

Therefore, the value of a at the center of the sphere is given by the equation 

"■kj'(;)v-dT-ijity'*'dT-r*j'(;)•*"r*J^)x('-*) <32) 

Let the potentials (p and A be defined by the equations 

1    f 1 1    f 1 
» = —     - 7adr  ads (33) 

4n J r 4n J r 

1    f 1 1    f 1 
A = —     - Vxa dr + —     - axds (34) 

4n J  r 4n J r 

where r is now the distance of the center of the sphere from the point of integration. 
Then the vector a is given by the equation 

a = - V^i + VxA (35) 

This is known as the Helmholtz theorem. 

HYDRODYNAMICS 

Let a solid body be moving at constant speed U through a fluid which was initially 
at rest. A Cartesian coordinate system can be set up with origin fixed in the body. 
Let i be in the direction of motion, let j be in the direction to the right, and let k 
be in the direction downward. Then relative to this coordinate system the flow is 
backward. The flow consists of two parts. The first part is a uniform flow with a velocity 
which is constant everywhere, and the second part is a local flow with a velocity which 
diminishes rapidly with distance. Let there be a nonslip boundary condition at the 
surface of the body. Then the uniform flow has a velocity - Ui everywhere, while the 
local flow has a velocity + Ui at the surface of the body. The velocity v in the local 
flow satisfies the Helmholtz theorem 



which gives the velocity at a field point in terms of velocities at all integration points. 
Volume integrals are evaluated throughout the fluid. Surface integrals are evaluated 
over the body, but vanish over the surface at infinity because of the diminution of 
velocity with distance. 

Insofar as the fluid is incompressible the divergence V-v is zero and the first integral 
vanishes everywhere. Next to the body there is a boundary layer. Within the boundary 
layer vorticity is diffusing outward. Outside the boundary layer the curl Vxv is zero 
and the second integral is limited to the boundary layer. 

In the limiting case of a thin boundary layer, let the volume element be a prism 
which straddles the boundary layer. Let the dimensions of the prism be c perpendicular 
to the boundary, 6 in the direction across the flow, and X in the direction along the 
flow. Then the volume element and the surface element are given by the equations 

dr = eöX ds = (5An (37) 

where n is a unit vector in the inward direction. Application of the Stokes theorem 
to a rectangle of width c and length X leads to the equivalence 

VxvdT = -vxds (38) 

For a field point far outside the boundary layer the second integral cancels the fourth 
integral, but for a field point inside the boundary layer the sign of V(;) is reversed 
and both integrals contribute to the velocity. The predominant integral outside the 
boundary layer is the third integral, which expresses the velocity as the integral over 
the body of radial flow from a continuous source distribution with the source density 

-^ in (39) 

where n is a unit vector directed outward from the body. Evaluation of the integrals 
is a quadrature which is complicated by the presence of an inverse square in the 
integrands. The inverse square introduces a spike in each integrand and the spike 
cannot be integrated by summation over finite intervals. A possible technique for 
integration through a spike will be the subject of a future report. 

The boundary layer flows into the wake behind the body. The structure of the wake 
depends upon the separation of flow in the boundary layer. The body may have a wave 
train. If the body is self-propelled, there is flow into the propeller. The uniform flow 
is disturbed by these local patterns of flow. The Helmholtz theorem may by applied 
to any or all of the patterns which disturb the uniform flow. 

A Rankine ovoid is that streamline of zero stream function which is generated by 
the ideal flow around a point source and a point sink. The NSRDC5 made a model with 
the same profile as the Rankine ovoid and towed the model in the towing tank. The 
real model had a boundary layer and wake which would be absent from the ideal flow 
around the source and sink. 

The velocity v for the ideal flow is given by the equation 

v = - t/i - V? (40) 

where <p is the potential of the source and sink. The surface normal at the boundary 
is given by the equation 

|bxv| 



where b is the binormal transverse to the streamline. For the nonslip boundary 
condition with a thin boundary layer the real flux is just equal to the ideal flux as 
indicated by the equation 

Uin = - V<p-n (42) 

Thus the normal component of velocity is the same for both ideal flow and real flow. 
It is well known that two solutions of Laplace's equation which have the same normal 
gradients at a boundary surface are identical to within an additive constant. The real 
flow outside the boundary is the ideal flow from the source and sink. 

The NSRDC5 measured the elevation in the wave train in the towing tank, and a 
computing program at NSWC* was used to compute the wave elevations for the point 
sources. The model was towed with a twisted cable and the boundary layer was fully 
turbulent. The forward motion in the boundary layer met partially the boundary 
conditions, and less source distribution was required to complete the boundary 
conditions. The experimental elevations were a few percent less than the computed 
elevations. Turbulence in the wake was revealed by photographs of smoke traces7. 

DISCUSSION 

Among the texts which have been inspected only two had derivations of the Helmholtz 
theorem, and they derived formulae for an infinite space, or for a field which was 
finite within a boundary and zero outside the boundary. In this report enough 
background material has been included to define notation and to clarify concepts. 

The gradient of velocity satisfies the identity 

Vv = i(Vv - Vv) + |(Vv + Vv) (43) 

where Vv is the transpose of Vv. The antisymmetric part is the rate of rotation and 
the symmetric part is the rate of strain. The differential change of velocity dv for a 
differential displacement dr is given by the equation 

dv = drVv (44) 

Application of the triple vector product rule to the antisymmetric part gives the 
equation 

dr|(Vv - Vv) = |(7xv)xdr (45) 

Thus the angular velocity u is given by the equation 

u = |V*v (46) 

It has become fashionable among hydrodynamicists to use omega for the curl itself, 
but this is a deplorable deviation from standard notation. The use of omega for angular 
velocity is pre-empted by its universal use in classical and quantum physics. It would 
be better to use gamma as defined by the equation 

y = Vxv (47) 

where y stands for the density of circulation. 

CONCLUSION 

The Helmholtz theorem is a useful law to which the flow in any flow field must 
conform within any mathematical boundary. 
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